Grade 6 Math Circles

February 5th, 2024
Number Theory: Divisibility and Proofs - Problem Set

Note: Problems that are marked with * are considered challenge problems!

1. List all the positive whole numbers that are divisors of the following numbers;
(a) 60
(b) 180
2. List all the positive whole numbers that are divisors of $3,9,27$, and 81 . What do you notice?
3. Use the definition of divisibility to show that all numbers divide 0 .
4. Use the Rule for Divisibility by 3 to determine if the following statements are true or false:
(a) $3 \mid 81$
(b) $3 \mid 111111111111111111111$
(c) $3 \mid 222222222$
(d) $3 \mid 1293746$
(e) $3 \mid 343293$
5. Use the Rule for Divisibility by 4 to determine if the following statements are true or false:
(a) $4 \mid 17$
(b) $4 \mid 222222222$
(c) $4 \mid 1293744$
(d) $4 \mid 18318716$
(e) $4 \mid 3432908$
6. Use the Rule for Divisibility by 5 to determine if the following statements are true or false:
(a) $5 \mid 25$
(b) $5 \mid 117365$
(c) $5 \mid 1293744$
7. Use the Rule for Divisibility by 6 to determine if the following statements are true or false:
(a) $6 \mid 24$
(b) $6 \mid 1173657$
(c) $6 \mid 1000100100$
(d) $6 \mid 1293744$
8. Use the Rule for Divisibility by 7 to determine if the following statements are true or false:
(a) $7 \mid 84$
(b) $7 \mid 365$
(c) $7 \mid 10000$
(d) $7 \mid 11111$
(e) $7 \mid 1293744$
9. Use the Rule for Divisibility by 8 to determine if the following statements are true or false:
(a) $8 \mid 16$
(b) $8 \mid 365$
(c) $8 \mid 10000$
(d) $8 \mid 11111$
(e) $8 \mid 1293744$
10. Use the Rule for Divisibility by 9 to determine if the following statements are true or false:
(a) $9 \mid 18$
(b) $9 \mid 36582$
(c) $9 \mid 10100100100101010100001000$
(d) $9 \mid 11112$
(e) $9 \mid 1293744$
11. Come up with rules for division by 18 and 24 .
12. Use the rules of divisibility to fully factor 2520 .
13. ${ }^{*}$ Let x be a 4 digit number. Prove that if $9 \mid x$, then the digits of x add up to a multiple of 9 .
14. ${ }^{* *}$ Let x be 2 digit whole number. Prove that if $7 \mid x$, then the difference between $2 \times$ the ones digit of x and the remaining part of x is divisible by 7 .
15. ${ }^{* * *}$ Let x be a six digit number given by $x=a b c d e f$. Show that if x is divisible by 101 , then $(a b-c d+e f)$ is divisible by 101.
